Programme Specification

Please note that this programme specification is correct on the date of publication but may be subject to amendment prior to the start of the 2019/2020 Academic Year

1. Programmes:

<table>
<thead>
<tr>
<th>Programme Title</th>
<th>MSc in Product Design Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of School</td>
<td>Barbara Ridley</td>
</tr>
<tr>
<td>Head of Department/Programme Leader</td>
<td>Craig Whittet</td>
</tr>
<tr>
<td>Programme Contact</td>
<td>Craig Whittet / Stuart Bailey</td>
</tr>
</tbody>
</table>

Minimum Duration of Study	12months
Maximum Duration of Study	24months
Mode of Study	Both Full and Part Time
Award to be Conferred	Master of Science
Exit Awards	
	Stage 1: Postgraduate Certificate in Product Design Engineering
	Stage 2: Postgraduate Diploma in Product Design Engineering
	Stage 3: Master of Science (MSc) in Product Design Engineering
Source of Funding	Self Funding

2. Academic Session: 2019-20

3. SCQF Level:

<table>
<thead>
<tr>
<th>3.1 Credits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

4. Awarding Institution:

| University of Glasgow |

5. Teaching Institutions:

| Glasgow School of Art |
| University of Glasgow |

Date of Policy Production/Revision: October 2017
6. Lead School/Board of Studies:
Glasgow School of Art

7. Programme Accredited By:
Institute of Mechanical Engineers

8. Entry Qualifications

<table>
<thead>
<tr>
<th>8.1 Highers</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 A Levels</td>
<td>N/A</td>
</tr>
<tr>
<td>8.3 Other</td>
<td>Entry requirements are normally a 2.2 Honours degree or equivalent (e.g. GPA of 3.0 or above) in a relevant subject area (product design engineering, mechanical engineering, electronic and electrical engineering being of particular relevance) or equivalent professional practice. Depending on your previous experience and qualifications, applicants may be asked to complete a design engineering assignment as part of their application.</td>
</tr>
</tbody>
</table>
| 8.4 IELTS Score Required on Entry | For applicants whose first language is not English, the University sets a minimum English Language proficiency level.
 International English Language Testing System (IELTS) Academic module (not General Training)
 - overall score 6.5
 - no sub-test less than 6.0 |
9. Programme Scope:

The MSc in Product Design Engineering (PDE) is a joint programme between the Glasgow School of Art (GSA) and the University of Glasgow. The GSA elements of the programme are based in the School of Design and embrace the ethos of a studio-based learning and teaching environment common throughout the Glasgow School of Art. The University of Glasgow elements of the programme are primarily provided by the College of Science and Engineering, through the School of Engineering.

The PDE MSc programme seeks to add to the conventional understanding and application of design engineering as a tool for driving technological and economic innovation. It achieves this through a concentration on the user as the fundamental driver of the Product Design Engineering process. One of the PDE programme aims is to respond to the industry demand for confident and skilled design engineering graduates who can apply a creative process to the development of products to meet user needs. The programme also aims to inspire students to become the developers, facilitators and leaders in the development of products and related services.

The programme includes subject material from Product Design, Human Factors, Mechanical, Electrical/Electronic and Software Engineering. In addition to the core subjects, students can select electives from the Glasgow School of Art and University of Glasgow.

10. Programme Aims:

The aims of the programme are:

The specific aims of the programme are as follows.

To allow students the opportunity to acquire and understand the key principles of theory, research and practice within the field of Product Design Engineering. These principles include contemporary design engineering practice and its context; product design engineering as a collaborative process; research methodologies; and the critical, analytical, problem-based learning skills required for both autonomous practice and team-working.

To develop a greater understanding of the design techniques, production and manufacturing processes, as well as the conceptual and research components previously acquired. It aims to build upon stage 1 through an emphasis on: producing and reporting on practical projects, frequently through group activity; technological potential within user-led collaboration, e.g. Human Factors; and creative collaboration and the generation of social and economic value. Students will be expected to develop a proposal of study outlining their self-directed final project, before embarking on the Masters project.

To further develop and apply the understanding of previous stages in a critical and reflective manner through the completion of a self-directed project and report. This will require and involve the application of integrating skills including negotiation, research, evaluation, communication and project management.
10.1 Stage 1 Aims:

Stage 1 (PGCert) – Weeks 1 through 15 : 60 credit points
The programme aims at Stage 1, the Postgraduate Certificate in Product Design Engineering, are designed to allow students the opportunity to acquire and understand the key principles of theory, research and practice within the field of Product Design Engineering. These principles include contemporary design engineering practice and its context; product design engineering as a collaborative process; research methodologies; and the critical, analytical, problem-based learning skills required for both autonomous practice and team-working. Students successfully completing this stage of the programme can progress to Stage 2 (PG Dip).

10.2 Stage 2 Aims:

Stage 2 (PGDip) – Weeks 16 through 30 : 60 credit points
Stage 2 of the programme, the Postgraduate Diploma in Product Design Engineering, aims to develop a greater understanding of the design techniques, production and manufacturing processes, as well as the conceptual and research components acquired in Stage 1. It aims to build upon stage 1 through an emphasis on: producing and reporting on practical projects, frequently through group activity; technological potential within user-led collaboration, e.g. Human Factors; and creative collaboration and the generation of social and economic value.
Students will be expected to develop a proposal of study outlining their self-directed final project during this stage. On successfully completing this stage of they can advance to the Masters stage, Stage 3

10.3 Stage 3 Aims:

Stage 3 (Masters) – Weeks 31 through 45 : 60 credit points
Stage 3 of the programme aims to further develop and apply the understanding of previous stages in a critical and reflective manner through the completion self-directed project and report. This will require and involve the application of integrating skills including negotiation, research, evaluation, communication and project management.

10.4 Stage 4 Aims:

Click here to enter text.

10.5 Stage 5 Aims:

Click here to enter text.
11. Intended Learning Outcomes of Programme:

The PDE MSc Intended learning outcomes are clustered into the three categories of “Product”, “Process” and “Presentation”.

The certificate stage equates broadly to initial teaching of core skills and methods – and in particular some of those outcomes listed under “Presentation” and “Process”. The diploma stage equates broadly to the application of these skills and methods – predominantly, but not exclusively “Process” outcomes. The final stage is where these skills and methods will be integrated to demonstrate Mastery of the subject through a self-directed project. In this stage “Product” outcomes are notably added to those achieved in the certificate and diploma stages.

PRODUCT – What the Product being designed has to do and have.

At the end of this MSc programme students should be able to:

1. Explain the main theories of human interaction through product solutions:
2. Develop a User Requirement Specification which meets the user’s functional, aesthetic and emotional requirements and expectations (including but not limited to: User Cycle, Experience and Feedback, Aesthetics, Semantics, Symbology, Form and Colour).
3. Select and specify appropriate Materials and Manufacturing processes:
4. Select and specify appropriate technologies and Components for product specification

PROCESS – How to carry out the activity of designing products.

As the student progresses through the MSc programme, he/she should gain an increasing ability to develop and apply **knowledge** of the Product in practical problem-solving situations, eventually in situations akin to those found in a professional working environment. Many of these skills are specific to (but not limited to) the Product Design Engineering programme. At the end of this MSc programme students should be able to:

1. Apply Engineering Theory in both studio and practical work:
2. Compute optimum Product Costs against Volumes against Manufacturing Methods for strategic product development
3. Evaluate ecological and responsibility issues from Politics and Society that affect the development of products and justify their introduction to Market
4. Engage with users and external contacts demonstrating an awareness of professional and ethical responsibilities
5. Develop justifiable product solutions using creative approaches, techniques and methods.
6. Apply concept generation & evaluation techniques resulting in optimised Design solutions.
7. Analyse a variety of information, issues, structures & objects, from simple to complex, in order to understand the purpose, significance, characteristics and inter-relationship of their component parts.
8. Synthesise knowledge, ideas and physical objects in creative ways to generate new knowledge, ideas or objects which fulfil a defined purpose.
9. Evaluate knowledge, ideas and objects, against appropriate criteria and specification, in order to decide their usefulness and relevance to the task in hand.
10. Engage with staff input & feedback, learning from studio experiences; responding to staff advice.
11. Engage with studio activity; attendance & personal timekeeping
12. Manage & schedule project activity effectively
13. Gather and analyse appropriate information and extract key issues & justify product
requirements
14. Formulate research questions to methods of utilising visual and written sources.

PRESENTATION – Externalising and representing your ideas.
A range of skills are important in many aspects of life, and across a variety of personal and professional situations. At the end of this MSc programme you should be able to:

1. Externalise, record & develop ideas; (including Freehand sketching & drawing Design Journal, Logbook, research findings).
2. Communicate to a range of audiences using Visual & Verbal Presentation Techniques and Methods
3. Generate Orthographic drawing to appropriate professional standards
4. Produce physical models as an integral component of the design process including prototyping for experience.
5. Produce virtual 3D Models (CAD) and Reverse Modelling/Engineering simulation
6. Apply appropriate IT Skills (including 2D Digital Image Manipulation and Compositing).

11.1 Intended Learning Outcomes of Stages
The programme learning outcomes described earlier under the headings Product, Process and Presentation apply to a greater, or lesser, extent to all three stages of the PDE MSc programme. Stage 1 equates broadly to initial teaching of core skills and methods, while Stage 2 equates broadly to the application of these skills and methods. In the final stage, Stage 3, these skills and methods are integrated to demonstrate Mastery of the subject through a self-initiated and self-directed project. The table below therefore indicates the stage at which each learning outcome is primarily introduced and assessed. It should be noted that learning in one stage will continue to influence the quality of outputs in later stages of the programme.

<table>
<thead>
<tr>
<th></th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>1,5,6,7,10,11,14</td>
<td>1,2,4</td>
<td>3</td>
</tr>
<tr>
<td>Process</td>
<td>1,5,6,7,10,11,14</td>
<td>4,9</td>
<td>2,3,8,12,13</td>
</tr>
<tr>
<td>Presentation</td>
<td>1,2,4,5</td>
<td>3,6</td>
<td></td>
</tr>
</tbody>
</table>

Table: Primary points of introduction and assessment of intended learning outcomes

11.2 Intended Learning Outcomes of Stage 1
Stage 1 you are developing new skills, design methods and processes. By the end of Stage 1 you should be able to demonstrate your ability to:

PROCESS – How you carry out the activity of designing products.
1. Apply Engineering Theory in both studio and practical work.
5. Develop justifiable product solutions using creative approaches, techniques and methods.
6. Apply concept generation & evaluation techniques resulting in optimised Design solutions.
7. Analyse a variety of information, issues, structures & objects, from simple to complex, in order to understand the purpose, significance, characteristics and inter-relationship of their component parts.
10. Engage with staff input & feedback, learning from studio experiences; responding to staff advice.
11. Engage with studio activity; attendance & personal timekeeping.
14. Formulate research questions to methods of utilising visual and written sources.
11.3 Intended Learning Outcomes of Stage 2

As you progress from Stage 1 through Stage 2, you should gain an increasing ability to apply your knowledge of Product, Process and Presentation and demonstrate design skills and methods in practical problem-solving situations. At the end of Stage 2 you should be able to:

PRODUCT – What the Product you’re designing has to do and have.
1. Explain the main theories of human interaction through product solutions.
2. Develop a User Requirement Specification which meets the user’s functional, aesthetic and emotional requirements and expectations (including but not limited to: User Cycle, Experience and Feedback, Aesthetics, Semantics, Symbology, Form and Colour).
4. Select and specify appropriate technologies and Components for product specification.

PROCESS – How you carry out the activity of designing products.
1. Apply Engineering Theory in both studio and practical work.
4. Engage with users and external contacts demonstrating an awareness of professional and ethical responsibilities.
5. Develop justifiable product solutions using creative approaches, techniques and methods.
6. Apply concept generation & evaluation techniques resulting in optimised Design solutions.
7. Analyse a variety of information, issues, structures & objects, from simple to complex, in order to understand the purpose, significance, characteristics and inter-relationship of their component parts.
9. Evaluate knowledge, ideas and objects, against appropriate criteria and specification, in order to decide their usefulness and relevance to the task in hand.
10. Engage with staff input & feedback, learning from studio experiences; responding to staff advice.
11. Engage with studio activity; attendance & personal timekeeping.
14. Formulate research questions to methods of utilising visual and written sources.

PRESENTATION – Externalising and representing your ideas.
A range of skills are important in many aspects of life, and across a variety of personal and professional situations. At the end of this MSc programme you should be able to:
1. Externalise, record & develop ideas; (including Freehand sketching & drawing, Design Journal, Logbook, research findings).
2. Communicate to a range of audiences using Visual & Verbal Presentation Techniques and Methods.
3. Generate Orthographic drawing to appropriate professional standards.
4. Produce physical models as an integral component of the design process including prototyping for experience.
5. Produce virtual 3D Models (CAD) and Reverse Modelling/Engineering simulation.
6. Apply appropriate IT Skills (including 2D Digital Image Manipulation and Compositing).
11.4 Intended Learning Outcomes of Stage 3

In the final stage, Stage 3, you should be able to demonstrate the integration of knowledge, skills, methods and process developed through Stages 1 and 2 evidenced through a self-initiated and self-directed project. At the end of Stage 3 you should be able to:

PRODUCT – What the Product you’re designing has to do and have.
1. Explain the main theories of human interaction through product solutions.
2. Develop a User Requirement Specification which meets the user’s functional, aesthetic and emotional requirements and expectations (including but not limited to: User Cycle, Experience and Feedback, Aesthetics, Semantics, Symbology, Form and Colour).
3. Select and specify appropriate Materials and Manufacturing processes.
4. Select and specify appropriate technologies and Components for product specification.

PROCESS – How you carry out the activity of designing products.
1. Apply Engineering Theory in both studio and practical work.
2. Compute optimum Product Costs vs Volumes vs Manufacturing Methods for strategic product development.
3. Evaluate ecological and responsibility issues from Politics and Society that affect the development of products and justify their introduction to Market.
4. Engage with users and external contacts demonstrating an awareness of professional and ethical responsibilities.
5. Develop justifiable product solutions using creative approaches, techniques and methods.
6. Apply concept generation & evaluation techniques resulting in optimised Design solutions.
7. Analyse a variety of information, issues, structures & objects, from simple to complex, in order to understand the purpose, significance, characteristics and inter-relationship of their component parts.
8. Synthesise knowledge, ideas and physical objects in creative ways to generate new knowledge, ideas or objects which fulfil a defined purpose.
9. Evaluate knowledge, ideas and objects, against appropriate criteria and specification, in order to decide their usefulness and relevance to the task in hand.
10. Engage with staff input & feedback, learning from studio experiences; responding to staff advice.
11. Engage with studio activity; attendance & personal timekeeping.
12. Manage & schedule project activity effectively.
13. Gather and analyse appropriate information and extract key issues & justify product requirements.
14. Formulate research questions to methods of utilising visual and written sources.

PRESENTATION – Externalising and representing your ideas.
1. Externalise, record & develop ideas; (including Freehand sketching & drawing, Design Journal, Logbook, research findings).
2. Communicate to a range of audiences using Visual & Verbal Presentation Techniques and Methods.
3. Generate Orthographic drawing to appropriate professional standards.
4. Produce physical models as an integral component of the design process including prototyping for experience.
5. Produce virtual 3D Models (CAD) and Reverse Modelling/Engineering simulation.
6. Apply appropriate IT Skills (including 2D Digital Image Manipulation and Compositing).
11.4 Intended Learning Outcomes of Stage 4

Not Applicable

11.5 Intended Learning Outcomes of Stage 5

Not Applicable

12. Assessment Methods:

Combination of:
- written assignments
- practical project
- presentations
- written examinations
- Assignments
- technical reports
- Design Process Journal

13. Learning and Teaching Approaches:

These vary from scheduled lectures, labs and tutorials to studio work, seminars, critiques, workshops and independent study.

Students will be contacted in the pre-arrival period and provided with additional material about their programme.

14. Relevant QAA Subject Benchmark Statements and Other External or Internal Reference Points:

- GSA Strategic Plan
- GSA Learning and Teaching Enhancement Strategy
- SCQF Level 11 Descriptor

15. Additional Relevant Information:

Support for students is provided by the Postgraduate/Undergraduate Adviser(s) of Studies supported by University resources such as the Effective Learning Adviser located in the Student Learning Service (www.gla.ac.uk/services/tls/sls/), the Student Counselling and Advisory Service (www.gla.ac.uk/services/counselling/), the Student Disability Service

Date of Policy Production/Revision | October 2017
16. Programme Structure and Features:

The programme comprises 180 credits in total, 120 credits of taught material and a project of 60 credits. It is governed by the Generic Regulations for Taught Masters Degrees. Early exit awards of Certificate (60 credits) and Diploma (120 credits) are available.

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory courses (60 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core Research Methods for Design*</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>PDE Introduction Project M (ENG5255P)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Advanced Manufacture M (ENG5096)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Microelectronics in Consumer Products P4 (ENG4098)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>In exceptional circumstances it may be possible in the early stages of the programme to consider an alternate Core Research Methods course in Stage 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory courses (50 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDE Human Factors M (ENG5256)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Integrated Engineering Design M (ENG5043)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>GSA Elective M (ENG5253)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Optional courses (10 credits selected from the following list)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Engineering M3 (COMPSCI3005)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Instrumentation & Data Systems M3 (ENG3034)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>The choice of es may be constrained by the timetable and the availability of staff.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project and dissertation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory course (60 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDE Final Project M (ENG5257P)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>The student selects a subject from project list, subject to acceptance by supervisor and availability of resources.</td>
<td></td>
</tr>
</tbody>
</table>

17. Can exemptions be granted?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☒</td>
</tr>
</tbody>
</table>

If yes, please explain:

Click here to enter text.
18. Does the programme comply with GSA APEL policy?

Yes ☒ No ☐

If no, please explain:

Click here to enter text.

19. Are there any arrangements for granting advanced entry?

Yes ☐ No ☒

If yes, please explain:

Click here to enter text.

20. Are there any arrangements for allowing students to transfer into the programme?

Yes ☐ No ☒

If yes, please explain stating requirements and levels to where this can apply:

21. Are there any arrangements for allowing students to transfer into other programmes?

Yes ☐ No ☒

If yes, please clarify:
22. What are the requirements for progressing from each stage?

Each of the three Stages of the MSc Product Design Engineering ends with a period of assessment and an exam board at which student progress is monitored. For full details of the procedures relating to postgraduate student progression.

Please refer to the GSA section of the University of Glasgow Academic Calendar 2017-18 for regulations relating to Degrees, diplomas and certificates awarded in conjunction with the Glasgow School of Art which provides information regarding degree awards, progression and appeals:

https://www.gla.ac.uk/myglasgow/senateoffice/policies/calendar/calendar2017-18/gsa/

The following section relates specifically to the MSc in Product Design Engineering –

https://www.gla.ac.uk/myglasgow/senateoffice/policies/calendar/calendar2017-18/gsa/mscpde/

Academic policies, and regulations can be found via the Student Regulations section on the GSA website:

http://www.gsa.ac.uk/about-gsa/our-structure/academic-services/student-regulations/

23. Please confirm that the programme follows GSA Examination Board policy and procedures, including External Examiner participation:

Yes ☒ No ☐

If no, please explain:

24. Please explain programme management and committee arrangements up to, but not including, Boards of Study:

Responsibility for the conduct of the programme will rest with the Programme Leader.

Management of the programme will follow agreed GSA structures. A Student/Staff Consultative Committee will meet to consider operational matters, while the Examination Board will be responsible for the award of the degree and for issues relating to progression. All Committees connected to the programme will operate according to standard procedures determined by the Academic Council of The Glasgow School of Art. The Student/Staff Consultative Committee will report to the School of Design Board of Studies, which reports to the GSA Undergraduate and Postgraduate Committee.

In addition to the above, a PDE MSc representative will be invited to attend the Joint Programme Committee and Joint Board. These meetings are attended by staff from the Glasgow School of Art and University of Glasgow.
25. Please explain the systems and arrangements regarding:

<table>
<thead>
<tr>
<th>a) Quality assurance of the management, operation and monitoring of the programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PDE MSc teaching team will be led by the Programme Leader. The Programme Leader will have executive responsibility for the direction, administration of the programme. He/she will be primarily responsible for the initiation of programme developments, and will have particular responsibility for the monitoring of student progress and for the continuous monitoring of the quality of the programme in line with The Glasgow School of Art procedures.</td>
</tr>
<tr>
<td>The co-ordination of the programme is managed by one member of staff from the School of Art and one member of staff from the University of Glasgow.</td>
</tr>
<tr>
<td>In order to ensure that quality standards are monitored and the quality of provision continually enhanced, the Product Design Engineering MSc programme will undertake the following:</td>
</tr>
<tr>
<td>Regular programme and team planning meetings</td>
</tr>
<tr>
<td>Student/Staff Consultative Committee</td>
</tr>
<tr>
<td>Joint Programme Committee</td>
</tr>
<tr>
<td>Annual Programme Monitoring</td>
</tr>
<tr>
<td>Quinquennial Periodic Review</td>
</tr>
<tr>
<td>Institutional review in accordance with the Quality Assurance Agency (QAA) and the Scottish Credit and Qualifications Framework (SCQF)</td>
</tr>
<tr>
<td>Reaccreditation with Professional Statutory Bodies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) Student feedback and representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student feedback and representation</td>
</tr>
<tr>
<td>In 2017 the GSA renewed its commitment to student feedback and representation under the heading of the Student Voice. This revamped system for Student Representation aims to inform and empower the student body to work together and to take action. It introduces the new role of Lead Reps for each academic school, for undergraduate and postgraduate taught students. Lead Reps and Class Reps are working for you. This is an initiative run jointly with GSASA and GSA’s Student President and arises from collaborative discussions with students and Course Reps across session 2016-17.</td>
</tr>
<tr>
<td>As such at GSA there are four main vehicles of representation:</td>
</tr>
<tr>
<td>- The Student Representative Council of GSA SA (SRC/Association reps) (responsible for voicing student opinion regarding the Students Association and extra-curricular project funding)</td>
</tr>
<tr>
<td>- The School Forums</td>
</tr>
<tr>
<td>- The formal GSA Staff Student Consultative Committee cycle (which includes Lead Reps and Class Reps). (Responsible for representing student opinion within the academic structures at GSA)</td>
</tr>
<tr>
<td>- The School Boards of Studies.</td>
</tr>
</tbody>
</table>

Lead Reps
Two Lead Reps are elected yearly for each of the Schools, one for Undergraduate study and another for Post-graduate (two for two-year programmes). Lead Reps attend Class Meetings, the SSCCs, and
their School’s Board of Studies. Lead Reps play a lead role in the organising and convening of the School Forum, an open forum that fosters discussion about School matters in advance of the SSCC. They represent the whole School and hear collective student issues. They represent issues for their School at the School’s Board of Studies. They work closely with the Student President and the Deputy Director to ensure that the student voice is recognised.

Class Reps
There is one class rep per year, per programme. They represent department specific experiences for your year group. They attend SSCC Meetings, School Forums and provide localised feedback for their class. The role of Class Reps is not only to communicate student opinion from their programme at class Meetings and the Staff Student Consultative Committee (SSCC) but also to participate in wider discussions that happen across their School. All Class Reps are offered an induction into the roles and responsibilities of the position, and a programme of training by the Student Representative Council.

President of the Student’s Association
The President of the Students’ Association represents the views of all students on the Committees beyond BoS level, including the Undergraduate and Postgraduate Committee, Academic Council and the Board of Governors.

Additional meetings and surveys
Student feedback and participation is also encouraged by additional student meetings held to discuss issues that inform the enhancement and quality of learning and teaching provision within the School. Annual questionnaires are used to seek feedback from the students that informs the programme quality enhancement process at all levels; delivery of courses, provision of equipment and resources, learning environment and student support.

c) Programme based student support

The students benefit from the co-ordination and involvement of staff at the Glasgow School of Art and University of Glasgow throughout the programme of study. A dedicated member of staff is aligned to each studio based project. At stage 3, the final project is supervised by two staff from Glasgow School of Art and one member of staff from the University of Glasgow.

Date of production/revision: 01 October 2017